en_GB
Hold Ctrl-tasten nede. Trykk på + for å forstørre eller - for å forminske.

DAT550_1

Datautvinning og dyplæring

Dette er studietilbudet for studieår 2020-2021.


Formålet med dette kurset er at studentene skal få kunnskap og praktisk erfaring med datautvinning (data mining) og dyplæringsteknikker. Emnet skal gi studentene dyp kjennskap til teknologier for datautvinning. Studentene skal kunne forberede storskala data for datautvinning (forbehandling) og bruke en rekke datautvinningsmetoder og dyplæring for å trekke ut nyttig kunnskap fra data. Kurset skal gi studentene mulighet til å lære moderne datautvinnings- og dyplæringsalgoritmer og -verktøy. Studentene vil få praktisk erfaring gjennom å prøve disse verktøyene på ekte data.

Læringsutbytte

Kunnskap:
Kandidaten har:
  • avansert kunnskap innenfor fagområdet og spesialisert innsikt i teori og praksis om data forberedelse, utvelgelse og utvinning.
  • inngående kunnskap om fagområdets vitenskapelige metoder.
  • kan anvende kunnskap på nye områder innenfor datautvinning og dyplæring.

Ferdigheter:
Kandidaten:
  • kan analysere og forholde seg kritisk til ulike informasjonskilder og anvende disse til å strukturere og formulere faglige resonnementer for ulike datautvinningsoppgaver.
  • kan analysere eksisterende teorier, metoder og fortolkninger innenfor fagområdet datautvinning og dyplæring og arbeide selvstendig med datautvinning og dyplæring
  • kan bruke relevante datautvinningsmetoder som klynging (clustering), klassifisering, og datautvinning fra grafer og datastrømmer, vanlige mønstre, sammenhenger, dyplæring for forskning og faglig utviklingsarbeid på en selvstendig måte.
  • kan gjennomføre et selvstendig, avgrenset forsknings- eller utviklingsprosjekt under veiledning og i tråd med gjeldende forskningsetiske normer som innebærer å implementere data mining pipelines, vurdere og stille parameterne for ulike data mining modeller ved hjelp av state-of-the-art verktøy.

Generell kompetanse
Kandidaten:
  • kan analysere relevante fag-, yrkes- og forskningsetiske problemstillinger i datautvinning og dyplæring.
  • kan anvende sine kunnskaper og ferdigheter på nye områder for å gjennomføre avanserte arbeidsoppgaver og prosjekter.
  • kan formidle omfattende selvstendig arbeid om datautvinning og dyplæring problemstillinger.
  • kan kommunisere problemstillinger, analyser og konklusjoner innenfor fagområdet, både med spesialister og allmennheten.
  • kan bidra til nytenking og i innovasjonsprosesser i datautvinning og dyplæring.
  • Identifisere de teoretiske og praktiske utfordringene bak ulike data mining og dyplæringsteknikker. Kan liste opp og beskrive styrker, begrensninger og avveininger mellom ulike data mining teknikker og velge de riktige teknikker for å løse datavitenskapelige problemer for ulike applikasjoner.

Innhold

  • Datarensing, transformasjon og forberedelse
  • Dimensjonalitetsreduksjon, SVD, PCA
  • Anbefalingssystemer
  • Datautvinning fra grafer
  • Klassifisering
  • Nevrale nett og dyplæring
  • Gruppering
  • Utvinning av data fra datastrømmer

Forkunnskapskrav

Ingen.

Anbefalte forkunnskaper

DAT110 Grunnleggende programmering, DAT240 Videregående programmering, DAT540 Introduksjon til datavitenskap, STA500 Sannsynlighetsregning og statistikk 2
Python programmering og Jupyter notebooks. 

Eksamen/vurdering

Skriftlig eksamen og prosjektrapport
Vekting Varighet Karakter Hjelpemiddel
Skriftlig eksamen3/54 timerA - F1)
Prosjektrapport2/5 A - F
2/5 Prosjektoppgave + 3/5 skriftlig eksamen
Prosjektoppgave bestående av en stor programmeringsoppgave. Oppgaven utføres i gruppe. Karakteren for prosjektoppgaven baseres på innlevert programkode og prosjektrapport og gruppevis muntlig fremføring av innlevert programkode. Begge deler må gjennomføres før endelig karakter fastsettes. Gruppemedlemmene kan få ulik karakter basert på den muntlige fremføringen.
Hvis en student ikke består prosjektoppgaven, må hun/han ta denne om igjen neste gang emnet undervises.
1) Lærebøker og forelesningsnotater

Vilkår for å gå opp til eksamen/vurdering

Obligatoriske øvinger
Tre obligatoriske øvelser / programmeringsoppgaver som må være godkjent. Disse evalueres til godkjent / ikke godkjent.
Alle programmeringsøvelser må bestås for å få delta på skriftlig eksamen og for å få godkjent prosjekt.
Ferdigstillelse av obligatoriske laboratorieoppgaver skal gjøres innen angitte frister. Fravær på grunn av sykdom eller av andre årsaker skal meddeles laboratoriepersonalet snarest mulig. Man kan ikke forvente at bestemmelser for ferdigstillelse av laboratorieoppdragene på andre tidspunkter utføres med mindre avtale med laboratoriepersonalet er avtalt.
Hvis du ikke fullfører de tildelte laboratorieoppgavene i tide eller ikke har fått de godkjent, vil du ikke få adgang til eksamen.

Fagperson(er)

Emneansvarlig
Vinay Jayarama Setty
Instituttleder
Tom Ryen

Arbeidsformer

4 timer forelesninger / øvingsgjennomgang og 2 timer veiledede programmeringsøvelser og prosjekt. Programmeringsøvelser krever ytterligere ikke-veiledet arbeidsinnsats.

Overlapping

Emne Reduksjon (SP)
Websøk og data mining (DAT630_1) 5

Åpent for

Enkeltemner ved Det teknisk-naturvitenskaplige fakultet
Datateknologi - Master program

Emneevaluering

Skjer vanligvis gjennom skjema og/eller samtaler i henhold til gjeldende retningslinjer. 

Litteratur

Litteratur/pensum blir publisert så snart det er klargjort av emneansvarlig/faglærer


Dette er studietilbudet for studieår 2020-2021.

Sist oppdatert: 04.08.2020

Historikk